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1. Introduction 

 

The nonlinear Schrödinger equation (NLSE) is a nonlinear partial differential equation 

that does not generally offer analytic solutions except for some specific cases in which the 

inverse scattering method can be employed. The solution of NLSE is often necessary for an 

understanding of the nonlinear effects in optical fibers [1]. A large number of numerical 

methods can be used to solve partial differential equations. These can be classified into two 

categories known as finite-difference method (FDM) and the pseudo-spectral methods. One 

method of the pseudospectral category used extensively to solve the pulse-propagation 

problem in nonlinear dispersive media is the split-step Fourier method (SSFM). Generally 

speaking, pseudo-spectral methods are faster by up to one order of magnitude to achieve the 

same accuracy.  

The finite-difference method solves the NLS equation explicitly in the time-domain 

under the assumption of the paraxial approximation [2]. We apply this method to the solving 

NLSE and simulate the propagation of the chirped Gaussian pulse in the nonlinear optical 

fiber. As the increasing the number of high-speed links, there occurs also a demand for 

increasing the data transfers rate and the bandwidth of recently communication systems. 

These systems are divided into different wavelength patterns CWDM and DWDM. 

 

  

2. Theoretical overview 

 

The GVD (Group velocity dispersion) broadens optical pulses during their 

propagation inside an optical fiber. These pulses can be initially chirped or chirp can be 

generated inside the pulse during propagation. More specifically, a chirped pulse can be 

compressed during the early stage of propagation depending on the sings of chirp parameter 

C and the the GVD parameter β2.  Since β2 < 0 in the 1.55 μm wavelength region of silica 

fibers, the condition β2C< 0 is satisfied. SPM- induced chirp is power dependent so we can 

imagine that under certain condition the SPM- induced chirp can cancel the GVD- induced 

broadening of the pulse.  

The optical pulse would then propagate undistorted in the form of a soliton [3]. The 

study of most nonlinear effects in optical fibers involves the use of short pulses with widths 

ranging from ~ 10 ns to 10 fs. When such optical pulses propagate inside a fiber, both 

dispersive and nonlinear effects influence their shape and spectrum. For pulses of width T0 > 

5 ps the contribution of the third-order dispersion term is also small (as the carrier 

wavelength is not too close to the zero dispersion wavelength) we can use NLS equation in 

the form  



242 

 

       0
22

2

2

2
2 








AA

T

A
Ai

z

A
i 


    (1) 

 

The pulse amplitude ׀A׀
2

 is assumed to be normalized such that represents the optical power. 

The quantity |A|
2
 is then measured in units of m

-1
 if n2 is expressed in units of m

2
/W. 

Equation (1) includes the effects of fiber losses through α, of chromatic dispersion through β2, 

and of fiber nonlinearity through γ [4]. Briefly, the pulse envelope moves at the group 

velocity vg=1/β1 while the effects of group-velocity dispersion (GVD) are generated by β2. 

The GVD parameter β2 can be positive or negative depending on whether the wavelength λ is 

bellow or above the zero-dispersion wavelength λD of the fiber. In the anomalous dispersion 

regime (λ > λD), β2 is negative, and the fiber can support optical solitons. In standard silica 

fibers, β2 ~ 50ps2/km in the visible region but becomes close to -20ps2/km near wavelengths 

~1.5μm the change in sing occurring in the vicinity of 1.3 μm. Let us now consider the input 

Gaussian pulse that has been initially chirped. In the case of linearly chirped Gaussian pulses, 

the incident field can be written as  
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where C is the chirp parameter. When 02 C , a chirped Gaussian pulse broadens 

monotonically at a rate faster than that of unchirped pulse. The reason is related to the fact 

that the dispersion-induced chirp adds to the input chirp because the two contributions have 

the same sign. The situation change for 02 C . In this case, the contribution of the 

dispersion-induced chirp is of kind opposite to that of the input chirp [5]. 

 

 

3. Numerical results 

Most of used laser pulses can be approximated by the Gaussian distribution. Equation (1) 

describes the amplitude envelope of this kind of pulses. The chirp parameter C describes the 

frequency change inside the pulse envelope. By increasing value of the parameter m to 

infinity, we can achieve rectangular shape of input signal as Fig. 1 shows. Here we can 

observe the shape of the input pulse depending on the m parameter. The case m > 1 

corresponds to super-Gaussian pulses. 

  

 

 

 

Fig.1:  Various shapes of input signal depending on m parameter for Gaussian pulse and 

super-Gaussian pulse. 
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The second step of our investigation includes the space-time step and this problem 

was solved by using the time vector moving in space direction. Distance was calculated as a 

ratio of distance z and the calculated dispersion length LD. Inside of a cycle of program the z 

was calculated distance using the equation (1). As result of this program were the space-time 

movement of Gaussian and super-Gaussian pulses. From Fig. 2 we can observe at the left 

side the shape of input pulse and on the right side the 3-D model of Gaussian pulse after 

propagated distance including the dispersion and nonlinear effects.  
 

 
Fig.2: propagation of super-Gaussian pulse with considering dispersion and nonlinear effects 

 

The pulse shape change can be described as a back-reflection of input signal. After 

some commutating cycles, the broadening an also the low amplitude can be observed. If we 

continue in the simulation we must consider the effect of self-phase modulation that can 

generate a positive signal chirp.   

Due to this chirp the shape of the propagated pulse can by repaired. The main problem 

in this case is to define the direct impact of self-phase modulation and to predict the exact 

distance for self-phase induced chirp domination. We can also observe the pulse phase 

changes as an impact of these chirp changes. When the dispersion is dominating through the 

positive chirp the phase goes to higher values and on the other side for pulse chirp generated 

by self-phase modulation leads to lower values. The Figure 3 right shows the amplitude 

spectrum of propagated super-Gaussian pulse. Most of the frequency components are situated 

on low or height frequencies and the middle part of frequency range is empty. This effect is 

caused by the nature of super-Gaussian leading and trailing edge.        
 

   
Fig.3: left: phase change due to dispersion effects right: amplitude spectrum of Gaussian 

pulse after some distance travelled 
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4. Conclusion 

In this paper we have demonstrated not frequently used numerical simulations of the 

super-Gaussian pulses propagation in the optical fibers. The first part of this paper presents 

the theoretical fundamentals of the nonlinearities formulation and signal degradation effects 

that must be considered in high-speed communication systems. The main goal of this paper 

was to create the starting point for future numerical research with new generation networks 

using the phase sensitive detectors or in case of coherent systems and detectors. 
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